Понятия со словосочетанием «точная верхняя грань»

Связанные понятия

Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.

Подробнее: Прямая и обратная предельная теорема
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
В алгебраической геометрии дивизоры являются обобщением подмногообразий некоторого алгебраического многообразия коразмерности 1. Существуют два различных таких обобщения — дивизоры Вейля и дивизоры Картье (названы в честь Андре Вейля и Пьера Картье), эти понятия эквивалентны в случае многообразий (или схем) без особенностей.

Подробнее: Дивизор (алгебраическая геометрия)
В математике, норма́льная фо́рма — простейший либо канонический вид, к которому объект приводится эквивалентными преобразованиями.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Аффи́нная свя́зность — линейная связность на касательном расслоении многообразия. Координатными выражениями аффинной связности являются символы Кристоффеля.
Крива́я или ли́ния — геометрическое понятие, определяемое в разных разделах математики различно.
В математике (общей алгебре) многочлен от нескольких переменных над полем называется гармоническим, если лапласиан этого многочлена равен нулю.

Подробнее: Гармонический многочлен
Гауссова кривизна — мера искривления поверхности в окрестности какой-либо её точки. Гауссова кривизна является объектом внутренней геометрии поверхностей, в частности, не изменяется при изометрических изгибаниях.
Интеграл Лебе́га — это обобщение интеграла Римана на более широкий класс функций.
Функция Гильберта, ряд Гильберта и многочлен Гильберта градуированной коммутативной алгебры, конечно порождённой над полем — это три тесно связанных понятия, которые позволяют измерить рост размерности однородных компонент алгебры.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Вложение Куратовского — определённое изометрическое вложение метрического пространства в банахово пространство непрерывных ограниченных функций на нём.
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Слабая сходимость в функциональном анализе — вид сходимости в топологических векторных пространствах.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
В математике, симметрической алгеброй S(V) (также обозначается Sym(V)) векторного пространства V над полем K называется свободная коммутативная ассоциативная K-алгебра с единицей, содержащая V.

Подробнее: Симметрическая алгебра
Кубический сплайн — гладкая функция, область определения которой разбита на конечное число отрезков, на каждом из которых она совпадает с некоторым кубическим многочленом (полиномом).
Тангенциальнозначные формы — это обобщение дифференциальных форм, при котором множеством значений формы является касательное расслоение к многообразию.

Подробнее: Тангенциальнозначная форма
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.

Подробнее: Выпуклое метрическое пространство
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Теоре́ма Тоне́лли — Фуби́ни в математическом анализе, теории вероятностей и смежных дисциплинах сводит вычисление двойного интеграла к повторным.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.

Подробнее: Скобка Пуассона
Интегра́л Ри́мана — одно из важнейших понятий математического анализа. Введён Бернхардом Риманом в 1854 году, и является одной из первых формализаций понятия интеграла.
Тождество параллелограмма — одно из равенств в векторной алгебре и векторном анализе.
Симметрическое пространство — риманово многообразие, группа изометрий которого содержит центральные симметрии с центром в любой точке.
Свя́зность Ле́ви-Чиви́ты или связность, ассоциированная с метрикой — одна из основных структур на римановом многообразии.
Со́бственный ве́ктор — понятие в линейной алгебре, определяемое для произвольного линейного оператора как ненулевой вектор, применение к которому оператора даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение. Скаляр, на который умножается собственный вектор под действием оператора, называется собственным числом (или собственным значением) линейного оператора, соответствующим данному собственному вектору. Одним из представлений линейного оператора является квадратная...
Индекс особой точки векторного поля — математическое понятие, относящееся к дифференциальной топологии, дифференциальной геометрии, теории динамических систем и теории дифференциальных уравнений. Является топологической характеристикой изолированной особой точки векторного поля и определяется как степень гауссова отображения в данной точке.
Ба́зис (др.-греч. βασις «основа») — упорядоченный (конечный или бесконечный) набор векторов в векторном пространстве, такой, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого набора. Векторы базиса называются базисными векторами.
Бесконечномерное пространство — векторное пространство c бесконечно большой размерностью.
Теорема об огибающей (англ. envelope theorem) — результат о дифференцируемости целевой функции в оптимизационных задачах с параметром. Теорема гласит, что при варьировании значения параметра, изменение целевой функции (в определённом смысле) не обусловлено изменением оптимума. Теорема важна для сравнительной статики в оптимизационных моделях.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Характеристи́ческая фу́нкция случа́йной величины́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Разбиение интервала на вещественной оси это конечная последовательность вида...
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Симметрия встречается не только в геометрии, но и в других областях математики. Симметрия является видом инвариантности, свойством неизменности при некоторых преобразованиях.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я